# ProteinSolver: Solving the Inverse Protein Folding Problem with Graph Neural Networks [![HTML Manuscript](https://img.shields.io/badge/manuscript-HTML-orange.svg)](https://ostrokach.gitlab.io/proteinsolver/FGIDVYN9fMx8qvsyPSKtoLaEucROasB/report/) [![docs](https://img.shields.io/badge/docs-v0.1.1-blue.svg)](https://ostrokach.gitlab.io/proteinsolver/v0.1.1/FGIDVYN9fMx8qvsyPSKtoLaEucROasB/) [![conda](https://img.shields.io/conda/dn/ostrokach/proteinsolver.svg)](https://anaconda.org/ostrokach/proteinsolver/) [![build status](https://gitlab.com/ostrokach/proteinsolver/badges/v0.1.1/build.svg)](https://gitlab.com/ostrokach/proteinsolver/commits/v0.1.1/) [![coverage report](https://gitlab.com/ostrokach/proteinsolver/badges/v0.1.1/coverage.svg)](https://ostrokach.gitlab.io/proteinsolver/v0.1.1/FGIDVYN9fMx8qvsyPSKtoLaEucROasB/htmlcov/) ## Introduction `proteinsolver` is a deep neural network which learns to solve (ill-defined) constraint satisfaction problems (CSPs) from training data. ### Environment variables - `DATAPKG_DATA_DIR` - Location of training and validation data.